Lecture 1: Real World Problems and Differential Equations

Goals lecture of this lecture:

To get a brief idea of how real world problems are converted into equations;
 To be convinced that real world problems can be formulated into equations consisting of derivatives (Differential equations)

Example 1: Elastic bar

Goal: Model the displacement u(x) of the elastic bar at each position x under gravity.

(Elastic bar hanged vertically under gravity)

Talk to "customers" (physicists):
Force :
$$C(x) \frac{du}{dx}(x)$$

Ax
 $force : C(x) \frac{du}{dx}(x)$
 $force : C(x) \frac{du}{dx}(x)$
Force : $C(x + \Delta x) \frac{du}{dx}(x + \Delta x)$
 $\rho \Delta x a$

Force I = gravitational force = $P(\Delta X \alpha)$ density density At equilibrium state, all forces will be balanced.

$$c(x + \Delta x) \frac{du}{dx} (z + \Delta x) - c(x) \frac{du}{dx} (z) + (p(x) \Delta x \alpha) g = 0$$
Turn this formulation into an equation by dividing both sides by Δx and take $\Delta x \to 0$.

$$\int \lim_{\Delta x \to 0} \frac{c(x + \Delta x) \frac{du}{\Delta x} (x + \Delta x) - c(x) \frac{du}{dx} (x)}{\Delta x} + p(x) \alpha g = 0$$
or
$$\int \lim_{\Delta x \to 0} \frac{c(x) \frac{du}{dx}}{x + \Delta x} - c(x) \frac{du}{dx}}{x} + p(x) \alpha g = 0$$

$$\int \frac{dx}{dx} (\frac{u}{c(x)} \frac{du}{dx}) + p(x) \alpha g = 0$$

$$\int \frac{dx}{dx} (\frac{u}{c(x)} \frac{du}{dx}) + p(x) \alpha g = 0$$

$$\int \frac{dx}{dx} (\frac{u}{c(x)} \frac{du}{dx}) + p(x) \alpha g = 0$$

$$\int \frac{dx}{dx} (\frac{u}{c(x)} \frac{du}{dx}) + p(x) \alpha g = 0$$

2

Is a differential equation enough to determine the solution?

Consider a simple case let
$$C(x) \equiv 1$$
 and $f(x) = x^2 + 1$
Then:
 $-\frac{d}{dx} (c''(x) \frac{d}{dx} u(x)) = x^2 + 1$
 $\int -\frac{d}{dx} (\frac{d}{dx} (x)) dx = \int (x^2 + 1) dx$
 $\int -\frac{du}{dx} = \int \frac{x^3}{3} + x + C$
 $-u(x) = \frac{x^4}{12} + \frac{x^2}{2} + (x + D)$

Solution cannot be determined as it involves two unknown variables. Need more conditions! What if we know u(o) = u(1) = o (fixing the two end points) $u(x) = -\frac{x^4}{2} - \frac{x^2}{2} - Cx - D$ Then: $\Rightarrow \mathcal{U}(\circ) = -\mathcal{D} = \circ \Rightarrow \mathcal{D} = \circ$ $U(1) = -\frac{1}{12} - \frac{1}{2} - C = 0 = C = -\frac{7}{12}$: $U(x) = -\frac{x^4}{12} - \frac{x^2}{2} + \frac{7}{12}x$ (unique sol)

What if we know:
$$u(0) = 0$$
 and $\frac{du}{dx}\Big|_{x=1} = 0$.
Then: $u(x) = -\frac{x^4}{12} - \frac{x^2}{2} - Cx - D$
 $\frac{du}{dx}(x) = -\frac{x^3}{3} - x - C$
 $\Rightarrow u(0) = -D = 0 \Rightarrow D = 0$
 $\frac{du}{dx}(1) = -\frac{1}{3} - 1 - C = 0 \Rightarrow C = -\frac{9}{3}$.
 $u(x) = -\frac{x^4}{12} - \frac{x^2}{2} + \frac{9}{3}x$ (Unique solution)

-

To determine a unique solution, we need more conditions! (Need to ask "customers" what happens on the boundaries.)

A. Dirichlet: U(0) = C, and U(1) = C2 (Does NOT involve derivatives)

B. Dirichlet + Neumann :

$$u(o) = C_1$$
 and $C(x) \frac{du}{dx}\Big|_{x=1} = C_2$
(Neumann = involves derivatives)

Example 2: (Smooth approximation of unsmooth measurement)
Goal: Given a function (measurement)
$$W: [0,1] \rightarrow \mathbb{R}$$
, which is
Unsmooth. Find a smooth approximation $U: [0,1] \rightarrow \mathbb{R}$ of W ,
such that $U(0) = W(0) = 0$.
Rule: Unsmooth means $\left\lfloor \frac{du}{dx} \right\rfloor$ is big!
Mathematical formulation: (X)
Find $u: [0,1] \rightarrow \mathbb{R}$ with $U(0) = 0$ such that:
 $J(u) = \int_{0}^{1} \left\lfloor \frac{du}{dx} \right\rfloor dx + \int_{0}^{1} (U(x) - W(x))^{2}$ is minimized
This problem is related to solving:
 $-\frac{d}{dx} \left(\frac{\frac{du}{dx}}{\frac{1}{dx}} \right) + 2(U(x) - W(x)) = 0$ (Out of scope)

Analytic methods for solving differential equation

Note: Most differential equations do not have analytic (exact) solutions!

e.g.
$$-\frac{d}{dx} \begin{pmatrix} x \\ c(x) \\ u(x) \end{pmatrix} = \int_{1}^{55} x^{2} DOESNT haveanalytic Sol! $\int convert (approximation)$
 $-\frac{d}{dx} (x \\ u(x)) = x^{2}$
(Have analytic solution! Give a good
initial guess for the sol. of the
original equation!)$$

onto

-

CONTRACTOR AL

a

in Plane

Three most basic techniques:

- (1) Integrating factor
- (2) Separation of variables
- (3) Analytic spectral (Fourier) method

(1) Integrating factor
(A) First order differential equation (involving first derivatives
ONLY)
Consider: (A)
$$\frac{dy}{dx}$$
 + P(x) $y(x) = Q(x)$ (y is unknown function)
(et M(x) = $e^{\int_{x}^{x} P(s) ds}$ Then, it is easy to check:
 $\frac{d}{dx}(M(x) y(x)) = \frac{dM(x)}{dx}y(x) + M(x) \frac{dy}{dx}$
 $= e^{\int_{x}^{x} P(s) ds} P(x) y(x) + M(x) \frac{dy}{dx}$
 $= e^{\int_{x}^{x} P(s) ds} P(x) y(x) + M(x) \frac{dy}{dx}$
 $= e^{\int_{x}^{x} P(s) ds} P(x) y(x) + M(x) \frac{dy}{dx}$

Multiply both sides of
$$(4x)$$
 by $M(x)$:

$$M(x) \left(\frac{dy}{dx} + P(x)y(x)\right) = M(x) Q(x)$$

$$\frac{d}{dx} (M(x)y(x)) = \int M(x) Q(x)$$

$$\Rightarrow M(x) y(x) = \int M(x) Q(x) dx + C$$

$$y(x) = \left(\int (e^{\int x} P(x) dx) Q(x) dx + C\right) \left(e^{\int x} P(x) dx\right)$$

Remark: M(x) is called the integrating factor. Example 1: Consider = $\frac{dy}{dx} - g(x)y(x) = 0$, $1 \le x \le 0$ with y(1) = 1. Suppose g(x) = k the the Find an approximated guess of y(x). 9(x) Solution: Consider: dy - ky(x) = 0 Let $M(x) = e^{\int -\frac{k}{x} dx} = e^{-k \ln x} = x^{-k}$ $M(x)\left(\frac{dy}{dx} - \frac{k}{x}y(x)\right) = 0 \cdot M(x)$ Then: $\exists dx (M(x) y(x)) = 0$ =) $\chi \approx M(x) y(x) = C =) y(x) = C x^{k}$

